Хімія > Синтез та вивчення протипухлинної активності похідних 2-ариламшо-2-тіазолін-4-іонів
Аніліди N-ФАК (IV б, в, н) у дозі 0,1 ЕD50 потенціюють дію субнаркотичних доз барбітуратів, а речовини IV а, о, п, р виявляють слабкі аналептичні властивості. СИНТЕЗ ТА ПРОТИВІРУСНА АКТИВНІСТЬ ПОХІДНИХ 3-АРИЛАМІНО-6-К-4,5-ДИГІДРО-1,2,4-ТРИАЗИН-5-ОНУ Для похідних 1,2,4-триазину характерний широкий спектр біологічної активності. Зокрема, поряд з високою протипухлинною активністю знайдена активність проти ВІЛ. Тому метою роботи став синтез та пошук противірусних препаратів серед похідних 1,2,4-триазину 1, 3: а - R = С(СН3)3, б - R = СН3, в - R = СН2С6Н2ОСН2(4): 2а, 4а: R = С(СН3)3, R1R2=R3R4 = -ОСН2O-; 26: R = С(СН3)3, R1 = СООСН3, R2=Н; 2в: R = С(СН3)3, R1 = Н, R2=СF3; 46: R=СН3, R3= СF3, R4= Н; 4в: R = СН2С6Н4ОСН3(4), R3 = СІ, R4= СН3(2). Для вивчення зв'язку структура—противірусна активність в ряду похідних 1,2,4-триазину здійснено синтез похідних 6-R-3-ариламіно-4,5-дигідро-1,2,4-триазин-5-ону 2 і 4 нуклеофільним заміщенням метилтіогрупи у вихідних синтонах 1 і 3 на фрагмент відповідного ариламіну. Дезаміновані 6-R-3-метилсульфаніл-4,5-дигідро-1,2,4-триазин-5-они 3 було отримано послідовною обробкою водної суспензії відповідних 4-аміно-6-R-3-метилсульфаніл-4,5-дигідро-1,2,4-триазин-5-онів 1 надлишком соляної кислоти, а потім еквімолярною кількістю нітриту натрію. При вивченні нуклеофільного заміщення метилтіогрупи у сполуках 1 і З на залишок ароматичного аміну встановлено, що оптимальним є нагрівання еквімолярної суміші відповідних реагентів без розчинника на масляному огрівнику при температурі 150—170 °С. Відмічено, що вихід 4-аміно-З-ариламіно-6-К-4,5-дигідро-1,2,4-триазин-5-онів (2 а-в) нижчий, ніж дезамінованих 3-ариламінотриазинів (4 а-в). У спектрах ПМР 6-К-3-ариламіно-4,5-дигідро-1,2,4-триазин-5-онів (4 а-в) однопротонний синглет NH-групи триазинового кільця зареєстрований у ділянці 11,72—11,97 м.д., тоді як сигнал NН-групи залишку ариламіну розташований у більш сильному полі при 8,39 — 9,13 м.д. Аналогічний сигнал амідинового протона похідних 4-аміно-6-К-3-ариламіно-4,5-дигідро-1,2,4-триазин-5-онів (2 а-в) спостерігається приблизно у тій же ділянці спектра — 8,94— 9,58 м.д. Характерною особливістю спектрів сполук (2 а-в) є наявність двопротонного синглету NNН2-аміногрупи у ділянці 5,58—5,72 м.д.. СПЕКТРОФОТОМЕТРИЧНЕ ВИЗНАЧЕННЯ 10-АЛКІЛПОХІДНИХ ФЕНОТІАЗИНУ В ЛІКАРСЬКИХ ФОРМАХ З ВИКОРИСТАННЯМ ПЕРОКСИКИСЛОТНОГО ОКИСНЕННЯ Лікарські препарати аміназин, етаперазин, трифтазин, тіоридазин і дипразин за хімічною будовою належать до 10-алкілпохідних фенотіазину і широко застосовуються у клінічній практиці як седативні, нейролептичні, а також протигістамінні і протиблювотні (дипразин, етаперазин) засоби. Кількісне визначення препаратів у субстанціях згідно з нормативно-технічною документацією (НТД) виконують методом неводної ацидиметрії або алкаліметрії — потенціометричне (дипразин), у пігулках і драже — методом прямої УФ-спектрофотометрії або алкаліметрично (дипразин), а в розчинах для ін'єкцій — за вмістом азоту за К'єльдалем (аміназин), методом УФ-спектрофотометрії або алкаліметрично після вилучення визначуваної речовини досліджуваного розчину (дипразин). Крім офіційних, у літературі описано високочутливі методики кількісного визначення похідних фенотіазину в лікарських формах методами хроматографії, спектрофотометрії, екстракційної фотометрії, потенціометрії, амперометрії, полярографії, флуориметрії, хемілюмінесценції, кінетичним методом аналізу та ін. Зокрема, для спектрофотометричного визначення фенотіазинів переважно використовують реакції одноелектронного окиснення їх до забарвлених катіон-радикалів фенотіазонію, а визначення виконують у сильно кислому середовищі за характерною смугою вбирання світла у видимій ділянці спектра. Як окисники запропоновано пербромат, N-сукцинімід, хлорамін, молібдат, гексаціаноферат, солі феруму (111), церію (IV), монопероксосульфатна та азотна кислоти, пероксид водню та ін. Переважна більшість з них незадовільна з різних причин: вимагають нагрівання, максимально можлива оптична густина розчину встановлюється здебільшого протягом тривалого часу. Вихід продукту аналітичної реакції значною мірою залежить від умов її проведення: вільні радикали фенотіазонію стійкі лише у сильно кислому середовищі і піддаються гідролізу з утворенням безбарвних S-оксидів. Для одержання задовільних результатів слід суворо дотримуватися постійності умов виконання реакцій зі стандартним і досліджуваним розчинами. Неабиякий інтерес для спектрофотометричного визначення похідних фенотіазину виявляють реакції пероксикислотного окиснення з утворенням відповідних сульфоксидних похідних. Для пероксикислотного окиснення на відміну від багатьох інших відомих реагентів на фенотіазини характерне швидке досягнення та стале значення величини оптичної густини розчинів продуктів реакції в широкому інтервалі рН середовища. Так, визначення дипразину (прометазину) у розчині для вживання реr оs згідно з Фармакопеєю Великобританії пропонується виконувати після його попереднього окиснення до S-оксиду виготовленим іn situ розчином пероцтової кислоти. Утворення сульфоксиду в даній реакції відбувається за рахунок електрофільної атаки β-атома кисню пероксикислоти на атом сірки згідно з рівнянням. Однак використана як окисник пероцтова кислота — малотривка сполука, а наявність пероксиду водню у її розчинах може ускладнювати аналіз внаслідок ініціювання перебігу побічних реакцій окиснення. Мабуть, через те аналіз розчину дипразину за вищезгаданою методикою виконують лише після попереднього вилучення дипразину з досліджуваної лікарської форми. Цих недоліків можна уникнути, застосовуючи замість пероцтової кислоти як окисник вищі аліфатичні дипероксикарбонові кислоти. У розведених розчинах вищі аліфатичні пероксикислоти значно стійкіші порівняно з пероцтовою кислотою. Реакції їх термолізу та гідролітичного розщеплення в умовах аналізу — кінетичне загальмовані, а тому пероксид водню не утворюється, їх легко одержати з дикарбонових кислот і пероксиду водню в чистому стані і достатньо тривкі у часі. Реальний окисно-відновний потенціал розчинів дипероксидикар-бонових кислот у середовищі 0,1 М хлористоводневої кислоти і 0,2 М калію хлориду становить 1,56 В, що свідчить про їх порівняно високу окиснювальну здатність. Характерною особливістю розчинів дипероксидикарбонових кислот є відсутність впливу відповідних дикарбонових кислот — продуктів їх термічного розпаду — на величину електрохімічного потенціалу системи. В даній роботі вивчали кінетику і стехіометрію реакцій окиснення 10-алкілпохідних фенотіазину аліфатичними дипероксикарбоновими кислотами у водних розчинах, з'ясували оптимальні умови їх перебігу, здійснили ідентифікацію утворених продуктів реакції з метою широкого застосування їх у фармацевтичному аналізі. ПОШУК РЕЧОВИН, ЯКІ ПОЛІПШУЮТЬ ПРОЦЕСИ ПАМ'ЯТІ, СЕРЕД 1,2-ДИГІДРО-ЗЯ-1,3,4-БЕНЗОТРИАЗЕПШ-2-ОНІВ І -2-ТЮНІВ Відомо, що препарати 1,4-бензодіазепінового ряду неоднозначне впливають на здібність до навчання і на процеси пам'яті. В літературі є дані про те, що під впливом деяких бензодіазепінових транквілізаторів відбувається полегшення цих процесів, однак при збільшенні дози ефект поліпшення пам'яті зникає. Є також повідомлення про те, що діазепам залежно від умов експерименту і величини дози по-різному впливає на процеси пам'яті. Феназе-пам у низьких дозах полегшує процеси фіксації та консолідації пам'ятного сліду, а у високих дозах погіршує їх. Гідазепам, на відміну від феназепаму, в широкому діапазоні доз позитивно впливає на здібність до навчання та на процеси пам'яті і не чинить властивий для багатьох бензодіазепінів негативний вплив на пам'ять. Навчальні тести, проведені у клініці на здорових добровольцях, показали, що триазолам у малих дозах поліпшує пригадування інформації, одержаної до введення цього препарату, а лоразипам, темазепам, алпразолам, навпаки, погіршують пам'ять. Це підтверджується і в експерименті на тваринах. Згідно з літературними даними гетероаналоги 1,2-дигідро-ЗЯ-1,4-бензодіазепін-2-онів, зокрема 1,2-дигідро-ЗЯ-1,3,4-бензотриазепін-2-они, мають широкий спектр біологічної активності і являють інтерес як потенційні лікарські засоби для лікування ряду захворювань: депресій, остеопорозів, пухлин тощо. Проте даних стосовно вивчення впливу похідних 1,3,4-бензотриа-зепіну на пам'ять в літературі не знайдено. СИНТЕЗ, ФІЗИКО-ХІМІЧНІ ВЛАСТИВОСТІ, БІОЛОГІЧНА АКТИВНІСТЬ 9-АЦЕТИЛ- ТА АРИЛАМІНОПОХІДНИХ 5-НІТРОАКРИДИНУ Похідні акридину — відомі антимікробні агенти, дія яких обумовлена інактивацією ДНК. К активність грунтується на здатності зв'язування з нуклеїновими кислотами, що зумовлює вплив на епісомальні генетичні елементи бактерій. Наше дослідження спрямоване на виявлення нових речовин, які мають бактеріостатичну, протизапальну, фунгістатичну та аналгетичну активність серед похідних 5-нітроакридину. 5-Нітро-9-хлоракридини (І) синтезовано циклізацією 3-нітро-М-фенілан-транілових кислот дворазовим за вагою надлишком хлорокису фосфору без розчинника. При взаємодії 9-хлоракридинів (І) з ариламіном і карбонатом амонію синтезовано відповідно 5-нітро-9-N-арила,міноакрилини (II) та 9-амiноакриди-ни (IIІ). Експериментальне встановлено, що синтез 9-N-ариламіноакридинів (II а-є) доцільніше проводити в середовищі діоксану у присутності хлористоводневої кислоти (спосіб Б). Перевагами описаного методу є скорочення часу проведення синтезу, легкість проведення експерименту, високий вихід цільових продуктів. Ацетилування 9-аміноакридинів (III) проводили шляхом їх нагрівання з оцтовим ангідридом у середовищі піридину у співвідношенні 1:1 або 1:3. У результаті відповідно було отримано 9-моноацетиламіноакриди-ни (IV) та 9-діацетиламіноакридини (V).
Назва: Синтез та вивчення протипухлинної активності похідних 2-ариламшо-2-тіазолін-4-іонів Дата публікації: 2005-03-25 (1275 прочитано) |