Sort-ref.narod.ru - реферати, курсові, дипломи
  Головна  ·  Замовити реферат  ·  Гостьова кімната ·  Партнери  ·  Контакт ·   
Пошук


Рекомендуєм

Математика > Диференціальні рівняння першого порядку, не розвязані відносно похідної


Запишемо дискримінантну криву

Звідки - особливий розв’язок, так як через цей розв’язок проходить ще розв’язок, який міститься в загальному при .

4. Неповні рівняння.

а). Д.Р. які містять тільки похідну.

Це рівняння вигляду

(5.45)

Рівняння (5.45) може мати скінчену або нескінчену кількість дійсних розв’язків.

(5.46)

де – деякі числа, задовільняючі функцію .

Інтегруємо (5.46)

(5.47)

Так як то

(5.48)

загальний інтеграл Д.Р. (5.45). Таким чином при таких припущеннях Д.Р. (5.45) є системою прямих ліній, які можна записати у вигляді (5.48). При цьому в (5.48) можуть входити комплексні розв’язки Д.Р.

Приклад 5.5.

Розв’язати .

Згідно (5.48) – загальний інтеграл. Однак у нього крім дійсного розв’язку , входять розв’язки комплексного Д.Р.

б) Д.Р., які не містять шуканої функції мають вигляд

(5.49)

Якщо (5.49) можна розв’язати відносно похідної

(5.50)

то

(5.51)

являється загальним інтегралом Д.Р. (5.49).

Якщо ж розв’язати відносно не можна, а допускається параметризація

(5.52)

тобто

(5.53)

Тоді загальний розв’язок знаходять в параметричній формі

(5.54)

Якщо Д.Р. (5.49) має вигляд

(5.55)

тоді це рівняння легко параметризується .В частинному випадку . Загальний розв’язок запишеться в формі

(5.56)

Приклад 5.6.

Зайти загальний розв’язок рівняння .

Вводимо параметризацію .

, ,

Маємо

Загальний розв’язок в параметричній формі.

в) Д.Р., які не містятьнезалежної змінної.

Це рівняння вигляду

(5.57)

Якщо рівняння (5.57) розв’язане відносно , тобто

(5.58)

то

(5.59)

Являється загальним інтегралом Д.Р. (5.57). Особливими розв’язками можуть бути криві , де – корені рівняння (або ).

Якщо Д.Р. (5.57) не можна розв’язати відносно , але воно допускає параметризацію

(5.60)

то

(5.61)

Загальний розв’язок Д.Р. (5.57) в параметричній формі.

Приклад 5.7.

Розв’язати . Введемо параметризацію .

звідки

зашальний розв’язок нашого рівняння.

г) Узагальнено однорідні рівняння.

Д.Р. назвемо узагальнено однорідним, якщо ліва частина являється однорідною функцією аргументів , яким відповідають величини -го, -го і виміру, тобто

(5.62)

Зробимо заміну

(5.63)

де – нова незалежна змінна, – нова шукана функція. Маємо

тобто . З іншої сторони

(5.64)

Підставимо (5.63),(5.64) в Д.Р. (5.1)

отримане рівняння

(5.65)

не містить незалежної змінної .

Назва: Диференціальні рівняння першого порядку, не розвязані відносно похідної
Дата публікації: 2005-03-03 (958 прочитано)

Реклама



Яндекс цитирования
criminal justice education - loan payment calculator - cheap phentermine - cheap lowest - a by - cheap textbook - issues teacher
Page generation 0.070 seconds
Хостинг от uCoz