Математика > Доведення теорем Перрона-Фробеніуса та Маркова для матриць другого порядку
Доведення теорем Перрона-Фробеніуса та Маркова для матриць другого порядкуСторінка: 1/2
Відомо [[1]-[10]], яку важливу роль відіграють невід’ємні матриці в математичних моделях економіки, біології, теорії ймовірностей тощо. Одними з основоположних фактів теорії цих матриць є теореми Перрона. Перрона-Фробеніуса та Маркова. Доведення цих теорем в загальному випадку потребує застосування теорем з таких неелментарних розділів математики, як теорія екстремумів функції багатьох змінних, жорданова нормальна форма тощо. Мета роботи дати елементарне доведення вищезгаданих теорем Перрона, Перрона-Фробеніуса та Маркова для матриць другого проядку, яке цілком доступне і для школярів 9-го класу. Це дозволить, наприклад, на заняттях шкільних математичних гуртків чи факультативів розглянути та проаналізувати змістовні математично-економічні та теоретико-ймовірносні моделі (наприклад, модель Леонтьєва, випадкове блукання на відрізку) з повним доведенням всіх тверджень. Необхідні відомості з теорії матриць. Матриця розмірів m x n – це прямокутна таблиця чисел з m рядків та n стовпців. Позначається матриця так: Квадратною матрицею n-го порядку зветься матриця розміром n x n. Важливою числовою характеристикою матриці є її визначник, який позначається detA. Для 2x2 матриці . Матриці А та В однакових розмірів називаються рівними, якщо іх відповідні елементи однакові, що записують так: А=В. З матрицями можна здійснювати такі операції: Множити на число Приклад: Додавати матриці однакових розмірів: Приклад: Множити матриці: Приклад: Взагалі, добутком матриці А розмірів m x r та матриці В розмірів r x n називається матриця С розмірів m x n, яка позначається АВ. Елемент cij цієї матриці – це сума попарних добутків елементів i-го рядка матриці А та елементів j-го рядка матриці В, а саме: Якщо А та В квадратні матриці однакового порядку, то їх завжди можна перемножити. Квадратна матриця порядку n, у якої єлементи , а інші елементи є нулями, називається одиничною матрицією порядку n. Однична матриця має таку властивість: АЕ=ЕА=А, де А – квадратна матриця порядку n, Е – одинична матриця такого ж порядку. Нехай А – квадратна матриця, тоді матриця А-1 зветься оберненою до матриці А, якщо Не в кожної матриці є обернена до неї, а саме А-1 існує тоді і тільки тоді, коли . Беспосередньо можна первірити, що для Визначення: Число l називається власним значенням n x n матриці А, якщо знайдется стовпчик такий, що АХ=lХ. При цьому Х називається власним вектором матриці А, що відповідає власному значенню l. Якщо власний вектор Х відповідає власному значенню l, то сХ, де с - const, також власний вектор, що відповідає l. Власне значення є коренем характеристичного рівняння . Звідки видно, що не у кожної матриці є власні значення. Визначення: Матриця А зветься додатною, якщо всі її елементи додатні, це позначається А>0. Теорема Перрона: Нехай А - додатна матриця, тоді А має додатне власне значення r>0 таке, що: 1. r- відповідає єдиний (з точністю до множення на число) власний вектор. 2. інші власні значення по модулю < r. 3. власний вектор, що відповідає r, можна вибрати додатним (тобто з додатними елементами). Доведення теореми для 2х2 матриць. Нехай . Тоді . Напишемо характеристичне рівняння для матриці А: . Це квадратне рівніння з дискримінантом: І тому Тобто твердження теореми 1 і 2 доведені, якщо r=l1. Знайдемо власний вектор , що відповідає власному значенню l1 з рівності Тоді , або Враховуючи, що перепишемо систему у вигляді: Але і тому рівняння системи пропорціональні, а це означає, що одне з них можна відкинути. Знайдемо x1 з першого рівняння системи Щоб довести, що власний вектор можна вибрати додатним, достатньо перевірити, що ,тому що поклавши отримаємо x1>0. Враховуючи, що b>0 треба довести, що , але це випливає з того, що , бо cb>0. Таким чином третє твердження доведено, а з ним доведена теорема. Визначення: Матриця А n-го порядку зветься нерозкладною, якщо однаковим переставленням рядків та стовпців її не можна привести до виду , де А1, А2 - квадратні матриці розмірів k x k та (n-k) x (n-k) відповідно. Для 2х2 матриць це означає, що та Визначення: Матриця А зветься невід’ємною, якщо всі її елементи невід’ємні. Зауваження: Фробеніус довів, що твердження теореми Перрона залишаються в силі для нерозкладних невід’ємних матриць. Це можна довести, просто повторивши наше доведення теореми Перрона для 2х2 матриць у випадку, коли один або обидва діагональних елемента дорівнюють нулю. Визначення: Квадратна матриця називається стохастичною, якщо 1) 2) Теорема Маркова: Нехай для стохастичної матриці P існує натуральне число k0 таке, що (тобто всі елементи додатні). Тоді 1. (існування границі матриці означає, що існує границя кожного її елементу) 2. Матриця - має однакові рядки. 3. Всі елементи цих рядків додатні. Доведення теореми для 2х2 матриць. Запишемо стохастичну матрицю у вигляді , де Запишемо її характеристичне рівняння: , Це квадратне рівняння з дискрімінантом: І тому З урахуванням маємо , але якщо , то це значить, що p=q=1 або p=q=0, відкіля матриця P буде мати вигляд , або і тоді Pn містить нулі , що суперечить умові. Таким чином . Беспосередньою перевіркою з урахуванням стохастичності встановлюємо, що власному значенню відповідає власний вектор , де x1=x2, тобто, наприклад власний вектор. Знайдемо власний вектор , що відповідає власному значенню . За визначенням
Назва: Доведення теорем Перрона-Фробеніуса та Маркова для матриць другого порядку Дата публікації: 2005-03-03 (875 прочитано) |