Sort-ref.narod.ru - реферати, курсові, дипломи
  Головна  ·  Замовити реферат  ·  Гостьова кімната ·  Партнери  ·  Контакт ·   
Пошук


Рекомендуєм

Математика > Доведення теорем Перрона-Фробеніуса та Маркова для матриць другого порядку


Звідки

Згадуючи, що отримуємо

Очевидно, що рівняння системи пропорційні, тому одне з них можна відкинути. Знайдемо y1 з першого рівняння: або звідки , але , бо в протилежному випадку дана матриця мала б вигяд: , а тоді матриця мала б нульовий елемент , що суперечить умові. Тому можна записати, що

Доведемо тепер твердження 1 теореми.

Розглянемо матрицю S, стовпцями якої є власні вектори матриці P. Нам необхідно отримати зручну формулу для Pn.

Позначимо .

Оскілки , то існує S-1. Перепишемо рівняння та у матричній формі

або .

Відкіля і взагалі

Знайдемо границю Pn:

Твердження 1 теореми доведено.

Доведемо тепер, що рядки матриці однакові. Для цього обчиcлимо .

Оскільки , то Ми бачимо, що рядки матриці - однакові. Доведемо тепер, що їх елементи додатні. Для цього врахуємо отриману раніше залежність

Для того, щоб довести треба довести, що , треба довести, що та .

Маємо

,

, тому що p>0 і q >0

Теорема доказана.

Зауваження1 В процесі доведення ми вивели, що для 2х2 матриць

Зауваження2 Позначимо рядки граничної матриці . Тоді можна знайти з умови:

Доведення.

Оскільки

Зівдки

Або

Звідки

Зокрема, для 2х2 матриці

Умовою рядок визначається однозначно, що для 2х2 матриці можна перевірити.

В роботі дані для матриць другого порядку елементарні доведення таких фундаментальних теорем теорії невід’ємних матриць. як теореми Перрона, Перрона-Фробеніуса, Маркова.

У відомій нам літературі повне доведення цих теорем дається для загального випадку матриць n-го порядку з використанням неелемнтарних теорем і методів. А математичний апарат, який використовується в даній роботі, це: аналіз поведінки розв’язків квадратного рівняння та розв’язків системи двох лінійних рівнянь в залежності від коефіцієнтів.

Робота може бути використана при проведенні додаткових занять, присвячених розгляду вибраних неелементарних питань математики, за допомогою методів, які доступні школярам.


Список літератури:

С.А. Ашманов. Математические модели и метод в экономике.
МГУ. 1980

С.А. Ашманов. Введение в математическую экономику. “Наука”.
М., 1984

Р. Беллман. Введение в теорию матриц. “Наука”. М. 1969

Ф.Р. Гантмахер. Теория матриц. “Наука”. М.,1967

Б.В. Гнеденко. Курс теории вероятностей. “Наука”. М., 1988

С. Карлин. Математические метод в теории игр, программирования и экономике. “Мир”. М., 1964

Дж. Кемени, Дж. Скелл, Дж. Томпсон. Введение в конечную математику. Иностранная литература. М. 1963

П. Ланкастер. Теория матриц. “Наука”. М. 1978

Ю.М. Свирежев, Д.О.Логофет. Устойчивость биологических сообществ. “Наука”. М. 1978

В. Феллер. Введение в теорию вероятностей и ее приложение.
Т1. “Мир”.М. 1984

12

Назва: Доведення теорем Перрона-Фробеніуса та Маркова для матриць другого порядку
Дата публікації: 2005-03-03 (875 прочитано)

Реклама



Яндекс цитирования
interest rates - for vehicles - cheap getaway - college student debt consolidation - lowest airfares - buying for - expedia
Page generation 0.069 seconds
Хостинг от uCoz