Sort-ref.narod.ru - реферати, курсові, дипломи
  Головна  ·  Замовити реферат  ·  Гостьова кімната ·  Партнери  ·  Контакт ·   
Пошук


Рекомендуєм

Математика > Диференціальні рівняння першого порядку (з відокремлюваними змінними, однорідні, лінійні, Бернуллі)


.

Тоді загальний розв’язок рівняння набуває вигляду

,або .

Поклавши тут і , знайдемо, що .

Отже, частинний розв’язок поставленої задачі матиме вигляд

.

Приклад 3. З фізики відома залежність між силою стуму та електрорушійною силою в колі, яке має опір та самоіндукцію ( та - сталі):

.

Якщо , то це рівняння повністю збігається з диференціальним рівнянням, розглянутим у прикладі 2, хоч описувані процеси зовсім різні.

Нехай . Тоді відносно маємо диференціальне рівняння, яке зручно записати у вигляді

.

Знайдемо загальний розв’язок цього лінійного рівняння. Нехай , де та - невідомі функції. Тоді Після підстановки в рівняння та маємо:

або .

Невідому функцію знайдемо з рівняння

,звідки . Величина визначається з рівності ,

звідки

,

де довільна стала. Позначимо інтеграл, що фігурує справа, через : . Інтегруючи двічі частинами, отримаємо

,

а функцію визначимо за допомогою рівності

.

Отже, сила струму визначається виразом

.

12.5. Рівняння Бернуллі

Диференціальне рівняння виду

, (12.24)

в якому неперервні функції, а число відмінне від

нуля та одиниці, називається рівнянням Бернуллі (при

маємо лінійне рівняння, а при - рівняння з відокремлюваними

змінними).

Покажемо, що рівняння Бернуллі зводиться до лінійного диференціального рівняння першого порядку. Для цього поділимо ліву й праву частини рівняння (12.24) на :

та виконаємо заміну змінної . Оскільки

,

диференціальне рівняння Бернуллі перетворюється на рівняння

яке є лінійним. Проінтегрувавши його одним з описаних раніше способів і повернувшись від до попередньої змінної , можна отримати розв’язок рівняння Бернуллі.

Зауважимо, що зручніше розв’язувати рівняння Бернуллі, не зводячи його до лінійного, за допомогою підстановки , тобто так само, як і лінійне неоднорідне рівняння.

Покажемо це на прикладі.

Приклад . Розв’язати рівняння Бернуллі

.

Р о з в ’ я з о к. Будемо шукати невідому функцію у вигляді.. Підстановка цієї функції у рівняння приводить до рівності або

.

Функцію знайдемо із співвідношення , яке отримується, якщо вираз у дужках прирівняти до нуля: . Відносно отримується рівняння з відокремлюваними змінними

, загальний інтеграл якого буде таким:

,

де довільна стала. Отже, відповідь

.

12.6. Рівняння в повних диференціалах.

Інтегруючий множник

Означення. Диференціальне рівняння вигляду

(12.25)

називається рівнянням у повних диференціалах, якщо - неперервні диференційовані функції, для яких

виконується співвідношення

, (12.26)

причому та - також неперервні функції.

Покажемо, що коли ліва частина рівняння (12.25) є повним диференціалом деякої функції , то виконується умова (12.26), і навпаки, з виконання умови (12.25) випливає, що ліва частина рівняння (12.25) – повний диференціал (вперше цю умову отримав член Петербурзької академії наук Л.Ейлер (1707-1783)).

Справді, нехай зліва у рівнянні (12.25) стоїть повний диференціал, тобто .

Оскільки

,

маємо

Тоді частинні похідні та визначаються за формулами

.

Оскільки зліва в цих рівностях згідно з умовою записані неперервні функції, то це означає, що й праві частини, тобто та

, також неперервні. Звідси випливає, що , що й доводить рівність (12.26).

Припустимо тепер, що умова (12.26) виконується, і знайдемо функцію , завдяки якій диференціальне рівняння (12.25) можна подати у формі

(12.27)

Оскільки , то інтегруючи, маємо

(12.28)

Назва: Диференціальні рівняння першого порядку (з відокремлюваними змінними, однорідні, лінійні, Бернуллі)
Дата публікації: 2005-03-03 (1942 прочитано)

Реклама



Яндекс цитирования
most debt - электронные - airfares airfare - weight eating - cheap travel insurance - the world - онлайн тексты
Page generation 0.066 seconds
Хостинг от uCoz