Sort-ref.narod.ru - реферати, курсові, дипломи
  Головна  ·  Замовити реферат  ·  Гостьова кімната ·  Партнери  ·  Контакт ·   
Пошук


Рекомендуєм

Логіка > Шпори з логіки


Розрізняють два види неповної індукції: популярну та наукову.

В популярній індукції узагальнення здійснюються на основі перерахування ознак предметів/явищ (ознак хвороби, наближення дощу тощо), які неодноразово спостерігались в буденному житті. Історично – це початковий етап пізнання світу. Але якщо зустрічається бодай один факт, що заперечує популярну індукцію, її узагальнення вважається хибним. “Все, що літає – птах чи комаха. Кажан літає, але він не птах і не комаха”.

Наукова індукція своєму узагальненні визначає ознаки предметів та явищ цілеспрямовано, шляхом кваліфікованого (репрезентативного, статистичного) добору.

20. Безпосередні умовиводи.

Безпосередні умовиводи – це одержання нових знань шляхом перетворення логічної форми одного і того же судження. Ці перетворення можуть здійснюватись внаслідок таких логічних операцій: перетворення, обернення, протиставлення предикату і умовиводи згідно логічному квадрату.

Перетворення (превращение) – це встановлення відношення до Суб’єкта судження (S) протилежного вихідному Предиката (Р). Наприклад: S є Р перетворюється на S не є не-Р. “Вишня є ягода” в “Вишня не є не-ягода”. “Сало свині їстівне” перетворюється в “Сало не є неїстівним”.

Обернення – це логічне перетворення, в наслідок якого Суб’єкт вихідного судження стає у висновку Предикатом, а Предикат – Суб’єктом. Обернень буває декілька видів. Простим називається обернення в якому об’єм S і Р залишається незмінним. Воно справедливе, повне, тоді коли S і Р розподілені. Київ – столиця України. Столиця України – Київ. Якщо ж S і Р не розподілені, то таке просте обернення буде оберненням з обмеженням.

Можна робити обернення з одноразовим врахуванням якості і кількості Суб’єкта в судженні. Тут перетворюються:

Загальностверджувальні судження (А) перетворюються в частковостверджувальні (І) без обмежень: “Всі студенті нашої групи здали іспити з логіки” в “Деякі студенти з нашої групи склади іспити з логіки.

Всі S є Р

Деякі S є Р

Загальнозаперечні судження (Е) перетворюються на таке ж (Е) без обмежень з перестановкою S і Р: “Жоден студент нашої групи не є двієчником” в “Жоден двієчник не є студент нашої групи”

Жодне S не є Р

Жодне Р не є S

Частковостверджувальні (І) судження перетворюються в частковостверджувальні (І) з перестановкою S і Р. Деякі відмінники є студентами нашої групи. – Деякі студенті нашої групи є відмінниками.

Деякі S є Р

Деякі Р є S

Частковозаперечні (О), як правило не перетворюються, бо предикат його розподілений, а отже у висновку судження перетвориться на загальностверджувальне(А). Якщо “Деякі студенти нашої групи не є відмінниками”, то це не означає, що “Відмінник – не член нашої групи”

Протиставлення предикату (Р)- це судження в яких Суб’єктом стає поняття, що протилежне Предикату вихідного судження, а Предикатом – суб’єкт. Таким чином виясняється відношення S до не-Р:

Загальностверджувальне (A) перетворюється в загальнозаперечне(E):

Всі S є Р в Жодне не-Р не є S .

Загальнозаперечне (Е) - в частковостверджевальне (І):

Жодне S не є Р в Деякі не-Р є S.

Частковостверджувальні (І) засобами протиставлення предикату на перетворюються, бо “Деякі S є Р” не означає, що “Деякі S не є не-Р”.

Частковозаперечні судження (О) перетворюються в частнковозстверджувальні(І). Якщо вірно “Деякі S є Р”, то вірно і “Деякі не-Р є S”.

14. Правила логічного квадрату.

ПРОТИЛЕЖНІСТЬ

(КОНТРАРНІСТЬ)

П П

І І

Д Д

П П

О О

ПРОТИРІЧЧЯ (КОНТРАДИКТОР-НІСТЬ)

Р Р

Я Я

Д Д

К К

У У

В В

А А

Н Н

Н Н

Я Я

ЧАСТКОВА СУМІСНІСТЬ

(СУБКОНТРАРНІСТЬ)

Співвідношення обсягу категоричного судження:

А - Загальностверджувального: Всі S є Р.

Е - Загальнозаперечного: Всі S не є Р.

І - Частковостверджувального: Деякі S є Р.

О - Частковозареперечного: Деякі S не є Р.

21/22/23. Категоричний силогізм, його правила, модуси та фігури

Силогізм – це дедуктивний умовивід, в якому з категоричних суджень-посилок, зв’язаних загальним терміном-поняттям, виводиться третє судження – висновок (заключення).

Категоричний силогізм – це умовивід з двох категоричних (kategorikos – ясний, безумовний) суджень. Він складається з трьох категоричних суджень, два з яких є посилками, а третій – заключенням (висновком).

Береза (S) - дерево (Р)

Дерево(S) – рослина (Р)

Береза(S) – дерево (Р)

Складові категоричного силогізму називаються:

А. Меншим терміном називається поняття, яке у судженні (S є Р) висновку є Суб’єктом (S)

Б. Більшим терміном – поняття, яке у висновку є Предикатом (Р).

Кожний із меншого і більшого термінів висновку (ці терміни називаються крайніми) входять не лише у висновок, але також порізно в обидві посилки.

Правила термінів категоричного силогізму:

1. В кожному К.С. має бути три терміни: більший, менший і середній.

2. Середній термін повинен бути розподіленим (взятий повністю) хоча б в одній посилці. Для цього він логічно має бути або Суб’єктом в загальному судженні, або Предикатом заперечного судження.

3. Термін, що нерозподілений в посилках, не може біти розподіленим у висновку (заключенні).

Правила посилок категоричного силогізму:

1. З двох часткових посилок неможливо зробити висновок.

2. Якщо одна з посилок часткова (Деякі...), то і висновок буде частковим.

3. Якщо одна з посилок буде від’ємною (“Жоден..., ніхто...”; “... не є..., ...не-Р”, то і висновок буде від’ємним.

Модуси категоричного силогізму:

В посилках простого К.С. середній термін (М) може займати місце Суб’єкта чи Предиката. В залежності від цього існує чотири види, що їх називають модусами, силогізму:

В першій фігурі М виступає Суб’єктом в першій і Предикатом в другій.

В другій фігурі М – Предикат і в першій, і в другій посилках.

В третій фігурі М - Суб’єкт в обох посилках.

В четвертій фігурі М – Предикат в більшій і Суб'єкт в меншій посилках.

Графічно це зображується так:

1. М P 2. P M

S M S M

Назва: Шпори з логіки
Дата публікації: 2006-02-03 (8757 прочитано)

Реклама



Яндекс цитирования
cheap cheap - xenical xenical - - benzodiazepine side effects - xanax cheap - arcade jackpot online slot - education
Page generation 1.078 seconds
Хостинг от uCoz